Los elementos de la hipérbola son:

- Focos: son los dos puntos fijos (F1 y F2).
- Radio vector: es la distancia R de un punto de la hipérbola (P) a cualquiera de los focos.
- Eje focal: es el eje de simetría E que une a los dos focos. También se llama eje transverso.
- Eje no transverso: es la mediatriz T del eje focal.
- Centro: es el punto medio O de los dos focos. También se puede definir como la intersección del eje focal y el transverso.
- Vértices: son los dos puntos de intersección del eje focal con la hipérbola (V1y V2).

- Distancia focal: es la distancia 2centre focos. También se denota como F1F2.
- Eje real: es es la distancia 2a entre vértices.
- Eje imaginario: es la distancia 2b de los puntos B1 y B2. Los puntos B1 y B2 se generan como vemos en las relaciones entre semiejes.Así pues, existe una relación entre los semiejes y la distancia focal:
- Asíntotas: son las líneas rectas (A1 y A2) que se aproximan a la hipérbola en el infinito.
- Puntos interiores y exteriores: la hipérbola divide el plano en tres regiones. Dos regiones que contienen un foco cada una y otra región sin ningún foco. Los puntos contenidos en las regiones con un foco se llaman interiores (I) y los otros exteriores (Ex).
- Tangentes de la hipérbola: sobre cada punto Pi de ambas ramas de la misma. Cada tangente es la bisectriz de los dos radios vectores del punto P
Recopilado de (https://www.universoformulas.com/matematicas/geometria/hiperbola/ )
No hay comentarios.:
Publicar un comentario